An alternative subspace approach to EEG dipole source localization.

نویسندگان

  • Xiao-Liang Xu
  • Bobby Xu
  • Bin He
چکیده

In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Brain-to-Skull Conductivity Ratio on EEG Source Localization Accuracy

The goal of this study was to investigate the influence of the brain-to-skull conductivity ratio (BSCR) on EEG source localization accuracy. In this study, we evaluated four BSCRs: 15, 20, 25, and 80, which were mainly discussed according to the literature. The scalp EEG signals were generated by BSCR-related forward computation for each cortical dipole source. Then, for each scalp EEG measurem...

متن کامل

Independent Component Analysis

pervasive problem in neuroscience is A determining which regions of the brain are active, given voltage measurements at the scalp. If accurate solutions to such problems could be obtained, neurologists would gain noninvasive access to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for neural pathologies s...

متن کامل

Influence of Volume Conductor Model Errors on EEG Dipole Source Localization in Neonates

Magnetic resonance imaging (MRI) and electroencephalography (EEG) are the most important diagnostic tools in patients with neurological disorders. Integrating both techniques for 3D localization of active sources in the brain can help physicians to better understand their generation and propagation and do direct comparison with MRI lesions. Although EEG dipole source localization is widely used...

متن کامل

Conductivity Estimation with Eeg/meg Brain Source Localization in a Finite Element Head Model

Brain source localization with EEG and MEG modalities provides a useful means of identifying and localizing bioelectric source in the brain. Source localization has been used as an important tool in neuroscience and in clinical applications. Due to modern imaging technology, one can construct a subject specific volume conductor model from a set of MRI or CT images that can improve the accuracy ...

متن کامل

A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization.

Many implementations of electroencephalogram (EEG) dipole source localization neglect the anisotropical conductivities inherent to brain tissues, such as the skull and white matter anisotropy. An examination of dipole localization errors is made in EEG source analysis, due to not incorporating the anisotropic properties of the conductivity of the skull and white matter. First, simulations were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 49 2  شماره 

صفحات  -

تاریخ انتشار 2004